Self-Assembled 3D ZnO Porous Structures with Exposed Reactive {0001} Facets and Their Enhanced Gas Sensitivity

نویسندگان

  • Jin Chang
  • Muhammad Z. Ahmad
  • Wojtek Wlodarski
  • Eric R. Waclawik
چکیده

Complex three-dimensional structures comprised of porous ZnO plates were synthesized in a controlled fashion by hydrothermal methods. Through subtle changes to reaction conditions, the ZnO structures could be self-assembled from 20 nm thick nanosheets into grass-like and flower-like structures which led to the exposure of high proportions of ZnO {0001} crystal facets for both these materials. The measured surface area of the flower-like and the grass, or platelet-like ZnO samples were 72.8 and 52.4 m2∙g-1, respectively. Gas sensing results demonstrated that the porous, flower-like ZnO structures exhibited enhanced sensing performance towards NO2 gas compared with either grass-like ZnO or commercially sourced ZnO nanoparticle samples. The porous, flower-like ZnO structures provided a high surface area which enhanced the ZnO gas sensor response. X-ray photoelectron spectroscopy characterization revealed that flower-like ZnO samples possessed a higher percentage of oxygen vacancies than the other ZnO sample-types, which also contributed to their excellent gas sensing performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Reduction of CO2 by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets

ZnO microspheres, ZnO microflowers and ZnO nanorods are successfully synthesized via a convenient solvothermal method in distilled water-ethanol mixed medium. The as-prepared ZnO micro/nanomaterials are characterized by XRD, SEM, TEM, HRTEM, XPS, BET, and UV-Vis. The morphologies and exposed facets of the ZnO micro/nanomaterials can be controlled by simply changing the volume ratio of distilled...

متن کامل

High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO.

Three dimensional (3D) center-hollow ZnO architectures assembled by nanoparticles have been successfully fabricated on a large scale via a template-free method using an oil bath. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area, surface photocurrent and UV-Vis diffuse reflectance spe...

متن کامل

Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures

Various ZnO nanostructures such as porous nanorods and two hierarchical structures consisting of porous nanosheets or crystalline nanorods were prepared by the reaction of mixtures of oleic-acid-dissolved ethanol solutions and aqueous dissolved Zn-precursor solutions in the presence of NaOH. All three ZnO nanostructures showed sensitive and selective detection of C(2)H(5)OH. In particular, ultr...

متن کامل

Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies.

The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10̄10) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanopla...

متن کامل

Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate.

A ZnO nanocatalyst with a high percentage exposure of (0001) facets embedded on a hierarchical flower-like matrix has been prepared by an in situ topotactic transformation of a layered double hydroxide precursor, and exhibits significantly higher visible light photocatalytic performance than other ZnO nanomaterials with fewer exposed (0001) facets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013